Supplemental Material # Heavy Metal Lead Exposure, Osteoporotic-like Phenotype in an Animal Model, and Depression of Wnt Signaling #### **Authors:** Eric E Beier ^{1,2}, Jason R Maher ³, Tzong-Jen Sheu ¹, Deborah A Cory-Slechta ², Andrew J Berger ³, Michael J Zuscik ¹, Edward J Puzas ^{1,2} ## **Table of Contents** - 1. Title Page - 2. Table of Contents - 3. Raman spectroscopy analysis - 4. References - 5. Supplemental Table S1 - 6. Supplemental Table S2 - 7. Supplemental Table S3 - 8. Supplemental Figure S1 Supplemental details of Raman spectroscopy analysis: Raman spectroscopy is capable of determining the biochemical composition of bone and has been applied to study both normal and osteoporotic tissue (Akkus et al. 2004; Boivin and Meunier 2003; Carden and Morris 2000). Differences in mineral and protein content between the rat femurs were characterized by metrics related to bone biochemistry. The mineral-to-matrix ratio (MTMR; PO₄³⁻ / CH₂ peak area ratio) describes the degree of phosphate mineralization. The carbonate-to-phosphate ratio (CTPR; CO₃²⁻ / PO₄³⁻ peak area ratio) describes the amount of carbonate substitution in the hydroxyapatite crystal lattice. Collagen maturity (1660 cm⁻¹ / 1690 cm⁻¹ peak intensity ratio) describes the ratio of mature (pyridinoline) to immature (dehydro-dihydroxylysinonorleucine) collagen cross-links. Finally, crystallinity (inverse of the PO₄³⁻ peak width at half-max intensity) is a measurement of mineral maturity, crystallite size, and the amount of substitution into the apatitic lattice (Faibish et al. 2006; Paschalis et al. 2001). Metrics were normalized by the average value calculated among rats in the control group. #### **Supplemental References:** Akkus O, Adar F, Schaffler MB. 2004. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34(3):443-453. Boivin G, Meunier PJ. 2003. The mineralization of bone tissue: a forgotten dimension in osteoporosis research. Osteoporos Int 14 Suppl 3:S19-24. Carden A, Morris MD. 2000. Application of vibrational spectroscopy to the study of mineralized tissues (review). J Biomed Opt 5(3):259-268. Faibish D, Ott SM, Boskey AL. 2006. Mineral changes in osteoporosis: A review. Clin Orthop Relat Res 446:28-38. Paschalis EP, Verdelis K, Doty SB, Boskey AL, Mendelsohn, Yamauchi M. 2001. Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res 16(10):1821–1828. $\label{eq:SupplementalTableS1}$ Primer Sequences used for Real-Time Polymerase Chain Reaction analyses. | Gene | Forward Primer | Reverse Primer | |----------------------|------------------------|------------------------| | Adipsin (cfd) | CGGATGACGACTCTGTGCAG | CATCGCTTGTAGGGTTCAGGG | | Alkaline phosphatase | TCCTGACCAAAAACCTCAAAGG | TCGTTCATGCAGAGCCTGC | | aP2 | TGGGGACCTGGAAACTCGT | TCTCTGACCGGATGACGAC | | β-actin | TGTTACCAACTGGGACGACA | CTGGGTCATCTTTTCCAGGT | | β-catenin (mouse) | ATGGAGCCGGACAGAAAAGC | GAATCCAAGTAAGACTGCTGCT | | β-catenin (rat) | GCTGACCTGATGGAGTTGGA | TCTTCTTCCTCAGGATTGCC | | C/EBP α | ATAAGAACAGCAACGAGTACC | GCGGTCATTGTCACTGGTC | | C/EBP δ | CCACGACCCCTGCCATGTAT | TGTGATTGCTGTTGAAGAGGTC | | Osteocalcin | AGGGAGGATCAAGTCCCG | GAACAGACTCCGGCGCTA | | Osterix | ACTGGCTAGGTGGTGGTCAG | GGTAGGGAGCTGGGTTAAGG | | PPAR-γ | TATGGGTGAAACTCTGGGA | TGGCATCTCTGTGTCACCAT | | Runx-2 | GCCGGGAATGATGAGAACTA | GGACCGTCCACTGTCACTTT | | Type 1 collagen | GCATGGCCAAGAAGACATCC | CCTCGGGTTTCCACGTCTC | Supplemental Table S2 Biomechanical strength of lumbar vertebrae and long bones are decreased in Pb-treated rats. | | Stiffness | Max Load | Energy to Failure | Yield Force | |------------------------------|----------------------|-------------------------|--------------------------|-------------------------| | Compression ^a | (N/mm) | (N) | (mJ) | (N) | | Control | 700.99 ± 61.91 | 280.69 ± 30.93 | 86.50 ± 10.53 | 158.00 ± 33.94 | | Pb-exposed | $507.03 \pm 20.12^*$ | $181.61 \pm 21.05^*$ | 68.25 ± 6.07 | 123.43 ± 36.52 | | 4-point Bending ^b | | | | | | Control | 637.73 ± 36.91 | 264.42 ± 10.04 | 73.53 ± 7.39 | 242.99 ± 6.33 | | Pb-exposed | 590.45 ± 79.40 | $204.58 \pm 17.45^{**}$ | $50.52 \pm 5.83^*$ | $178.73 \pm 16.37^{**}$ | Data represent mean \pm SEM for 6 rats/group for compression and 9 rats/group for bending. ^aThird lumbar vertebra were subjected to compression to failure testing. ^bFemurs were subjected to 4-point bend testing. *Significant at p < 0.05, **significant at p < 0.005. ## **Supplemental Table S3** Biomechanical strength of lumbar vertebrae and long bones are decreased in Pb-treated rats. | Control | Pb-exposed | |------------------|---| | 1.00 ± 0.13 | $0.76 \pm 0.09*$ | | 1.00 ± 0.07 | $1.13 \pm 0.08*$ | | 1.00 ± 0.10 | $1.47 \pm 0.19*$ | | 1.00 ± 0.002 | 0.992 ± 0.005 * | | | 1.00 ± 0.13 1.00 ± 0.07 1.00 ± 0.10 | Biochemical parameters of each group derived from the Raman spectra and normalized to control values. Data represent mean \pm SEM for 4 rats/group, *p< 0.05 #### **Supplemental Figure S1** Pb exposure had no effect on cell viability and bone structure. No change was seen in positive TUNEL staining between 0-Pb and 50-Pb treated rats in either trabecular (A) or cortical bone (B). Normal woven bone was observed in cortical bone (C). Data represent mean \pm SEM for 3 samples. Scale bar: (A, B) 500 μ m, (C) 100 μ m, n=3.